Graph minors and the crossing number of graphs
نویسندگان
چکیده
There are three general lower bound techniques for the crossing numbers of graphs, all of which can be traced back to Leighton’s work on applications of crossing number in VLSI: the Crossing Lemma, the Bisection Method, and the Embedding Method. In this contribution, we sketch their adaptations to the minor crossing number.
منابع مشابه
META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملThe Minor Crossing Number
The minor crossing number of a graph G is defined as the minimum crossing number of all graphs that contain G as a minor. Basic properties of this new invariant are presented. We study topological structure of graphs with bounded minor crossing number and obtain a new strong version of a lower bound based on the genus. We also give a generalization of an inequality of Moreno and Salazar crossin...
متن کاملTopological graph theory and crossing numbers
The main objective of this workshop is to bring together two groups of researchers, those working in topological graph theory and graph minors, and those working with crossing numbers. Both areas have developed methods, mathematical tools and powerful results that have great potential for being used in the other area. For instance, the most basic open problem about crossing numbers is the Turan...
متن کاملPlanar Decompositions and the Crossing Number of Graphs with an Excluded Minor
Tree decompositions of graphs are of fundamental importance in structural and algorithmic graph theory. Planar decompositions generalise tree decompositions by allowing an arbitrary planar graph to index the decomposition. We prove that every graph that excludes a fixed graph as a minor has a planar decomposition with bounded width and a linear number of bags. The crossing number of a graph is ...
متن کاملToroidal Grid Minors and Stretch in Embedded Graphs∗
1 We investigate the toroidal expanse of an embedded graph G, that is, the size of the largest 2 toroidal grid contained in G as a minor. In the course of this work we introduce a new embedding 3 density parameter, the stretch of an embedded graph G, and use it to bound the toroidal 4 expanse from above and from below within a constant factor depending only on the genus and 5 the maximum degree...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 28 شماره
صفحات -
تاریخ انتشار 2007